The Call of an Unlimited Future

In 2014, Erik Wernquist released a short film about his vision of our future called “Wanderers”.  It shows an incredible and wondrous future that sets no limits on what we can do and on what we might become.  Every bit of it is within our reach.  The only thing that is missing is the vision on how to make that first step, the step from the surface of the Earth to orbit and to escape velocity, affordable to everyone.

Think about that as you watch it.

All it will take to make this happen in the real world are the four components of a combination launch system.  Components that can be affordably built right now with existing materials and technology.       Four components that will give us an unlimited future.

In the closing lines of the film, it says,

“Maybe it’s a little early, maybe the time is not quite yet, but those are the worlds promising untold opportunity.  [They] beckon.  Silently they orbit the sun . . . . waiting.”

Why are we waiting?

 

Index of Articles

  1. Opening the High Frontier
  2. Skyhook, a Journey to Orbit and Beyond
  3. In the Beginning . . .
  4. Why do Rockets Cost so Much?
  5. Combination Launch Systems
  6. It’s All About Speed!
  7. Visions of the Future
  8. The Call of an Unlimited Future
  9. Combination Launch Systems, part 2
  10. Outward Bound: Beyond Low Earth Orbit
  11. and someday . . . Starships!
  12. Mars: how to get there
  13. Outpost Space Stations
  14. Dreams of Space
  15. The Moon or Mars?
  16. Skyhooks and Space Elevators

Combination Launch Systems

Combination launch systems are launch systems that use two or more different methods to accelerate a launch vehicle up to orbital velocity in order to reduce the cost of getting to orbit.

There are many different launch concepts that we can build today that can be combined together to do this: subsonic air-launch; supersonic air-launch; ground accelerators; combination air-breathing and rocket motor propulsion systems; reusable launch vehicles; and, Skyhooks.  All of these concepts can be combined together to reduce launch costs.

There are also many ways to combine these concepts to make a combination launch system.  They can be as simple as using a vertically oriented ground accelerator to boost an existing expendable launch vehicle up to 600 MPH prior to igniting the rocket motor.  They can be as complex as combining air-launch with a reusable launch vehicle that uses a combination ramjet, scramjet, rocket motor propulsion system, that flies to the lower end of a non-rotating Skyhook.  The hard part is finding the combination that has the lowest user cost to orbit for the lowest possible initial investment, that is sized for the existing launch market and has the potential to grow as the market grows.

Combination launch systems are not new.  The Wright brothers used a catapult to boost their first airplane up to flight speed.  The U. S. NAVY still uses catapults to launch fighter planes from the decks of aircraft carriers.  The world’s first reusable rocket plane, the Bell X-1, was air-launched from a B-29.  Probably the best-known combination lunch system was the X-15 rocket plane that was air-launched from a B-52.  In 1967 they even test flew a mock-up of a scramjet on the X-15.  There were also studies that examined the possibility of supersonic air-launching a rocket-ramjet-scramjet powered delta winged version of the X-15 from the back of the XB-70 at Mach 3 that had a small expendable upper stage rocket for carrying satellites into Earth orbit.

Unfortunately, all of these ideas fell by the wayside in our rush to beat the Russians to the Moon back in the 1960’s.  It wasn’t until SpaceShipOne flew in 2004, the start of Virgin Galactic and Stratolaunch shortly thereafter, as well as SpaceX and Blue Origin developing reusable first stage launch vehicles, that we have seen a serious effort to develop combination launch systems again.  The only negative about this is that none of these new combination lunch systems go far enough.

While all of these concepts, ground accelerators, air-launch, reusable first stage launch vehicles, air-breathing and rocket propulsion systems, and Skyhooks, will reduce the cost of getting to orbit, none of them, by themselves, will make spaceflight affordable to everyone.  To do that we will need a launch system that combines almost all of these concepts together.

Once we have that, the solar system is ours.

 

Index of Articles

  1. Opening the High Frontier
  2. Skyhook, a Journey to Orbit and Beyond
  3. In the Beginning . . .
  4. Why do Rockets Cost so Much?
  5. Combination Launch Systems
  6. It’s All About Speed!
  7. Visions of the Future
  8. The Call of an Unlimited Future
  9. Combination Launch Systems, part 2
  10. Outward Bound: Beyond Low Earth Orbit
  11. and someday . . . Starships!
  12. Mars: how to get there
  13. Outpost Space Stations
  14. Dreams of Space
  15. The Moon or Mars?
  16. Skyhooks and Space Elevators

In the Beginning . . . .

In 1903 the Wright brothers made the first controlled sustained flight in a powered airplane.

In 1919 airplanes began crossing the North Atlantic.

In 1933 Boeing and Douglas introduced the first modern airliners.

It only took 30 years.

The first rocket to exceed 100 kilometers altitude was the German V-2 in 1944.

The first satellite to orbit the Earth was launched in 1957, and shortly thereafter he first manned spacecraft was launched in 1961.

Eight years after that, in 1969, people walked on the surface of the Moon.

It only took 25 years.

The last manned expedition to the Moon occurred in 1972.  The primary reasons for stopping was cost, and the lack of a realistic vision for how to make it affordable.

It has now been 44 years since people walked on the Moon and we have yet to come up with a workable plan for how to make spaceflight affordable to everyone.

That is what this website is about, a realistic vision that will make spaceflight affordable to everyone, using existing technology and known concepts that can be built and operated for an affordable price.  It’s about “Opening the High Frontier“.

 

Index of Articles

  1. Opening the High Frontier
  2. Skyhook, a Journey to Orbit and Beyond
  3. In the Beginning . . .
  4. Why do Rockets Cost so Much?
  5. Combination Launch Systems
  6. It’s All About Speed!
  7. Visions of the Future
  8. The Call of an Unlimited Future
  9. Combination Launch Systems, part 2
  10. Outward Bound: Beyond Low Earth Orbit
  11. and someday . . . Starships!
  12. Mars: how to get there
  13. Outpost Space Stations
  14. Dreams of Space
  15. The Moon or Mars?
  16. Skyhooks and Space Elevators

Skyhook, a Journey to Orbit and Beyond!

One of the key concepts discussed in the book “Opening the High Frontier” is the idea of combination launch systems.  This is a concept that combines a launch vehicle with other launch assist systems in order to reduce the velocity the launch vehicle needs to achieve to reach orbit.  One of those launch assist systems is called a non-rotating Skyhook.

This video shows how a non-rotating Skyhook works.

It starts with an Orion spacecraft on a suborbital flight path that will take it within reach of a crane located at the lower end of the Skyhook.  Upon capture, the crane docks the Orion with the Lower Endpoint Station.  The Midpoint Station on the Skyhook, which was positioned at the upper end of the Skyhook cable for the rendezvous, then starts moving down the cable to the Lower Endpoint Station.  Once the Midpoint Station and Lower Endpoint Station come together and dock, the ion propulsion system on the Midpoint Station is activated in order to start raising the orbital altitude of the Skyhook.  While this is going on, the crew and passengers of the Orion spacecraft will transfer to the Midpoint Station and the Orion spacecraft will be transferred to one of the docking ports at the upper end of the Midpoint Station.  Next, the Midpoint Station undocks from the Lower Endpoint Station and starts moving up the cable to the Upper Endpoint Station.  Upon arrivial, the passengers, crew, and Orion spacecraft are transferred to the Upper Endpoint Station, and the Midpoint Station starts back down the cable to the lower end.  Once the Midpoint Station has arrivied at the lower end of the cable and the Skyhook is at the proper orbital position, the Orion spacecraft is released from the Upper Endpoint Station to a higher orbit.

The power for all these orbit changes comes from the ion propulsion system on the Skyhook.  Since the ion propulsion system is much more fuel efficient than a chemical rocket motor, the amount of propellant that needs to be carried into orbit is greatly reduced.  The reduced velocity required for flying to the lower end of the Skyhook also increases the payload fraction of the launch vehicle and allows for the use of a smaller reusable launch vehicle, all of which reduces the cost of getting to orbit.

The Skyhook shown in the video is called a Basic Skyhook.  In the beginning, when combined with an air-launched reusable first stage launch vehicle, it has the potential of reducing the cost to orbit by 85%.  Over time, as the Skyhook is made longer, the launch vehicles get better, and the flight rate increases, it has the potential of reducing the cost to orbit to $20,000 per person.

I strongly recommend watching the video full screen, with the sound turned up!

Skyhook main station
Skyhook main station

 

Index of Articles

  1. Opening the High Frontier
  2. Skyhook, a Journey to Orbit and Beyond
  3. In the Beginning . . .
  4. Why do Rockets Cost so Much?
  5. Combination Launch Systems
  6. It’s All About Speed!
  7. Visions of the Future
  8. The Call of an Unlimited Future
  9. Combination Launch Systems, part 2
  10. Outward Bound: Beyond Low Earth Orbit
  11. and someday . . . Starships!
  12. Mars: how to get there
  13. Outpost Space Stations
  14. Dreams of Space
  15. The Moon or Mars?
  16. Skyhooks and Space Elevators